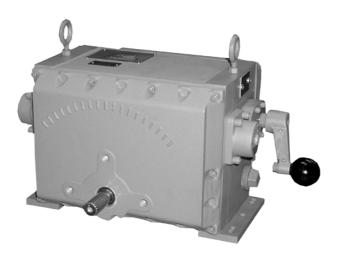


SM-5100 Series **Instruction Manual**

Rotary Actuators


Keeping the World Flowing

Contents

Troubleshooting

Section	Page	Section	Page
General Information	3–4	Parts Identification	15–17
Introduction	3	Maintenance	18–19
Cautions	3	Linkage Options	20
Receiving/Inspection	3	Major Dimensions	21
Storage	3		
Equipment Return	3		
Identification Label	4		
Abbreviations Used in This Manual	4		
General Actuator Description	4		
Basic Models	4		
Specifications	5–6		
Actuator	5		
Options	6		
Installation	7–8		
Typical Wiring Diagram	9		
Start Up	10–12		

13–14

FAILURE TO PROPERLY WIRE TORQUE/THRUST SWITCHES WILL RESULT IN ACTUATOR DAMAGE.

REFER TO THE SPECIFIC WIRING DIAGRAM SUPPLIED WITH YOUR ACTUATOR FOR CORRECT WIRING.

DUE TO WIDE VARIATIONS IN THE TERMINAL NUMBERING OF ACTUATOR PRODUCTS, ACTUAL WIRING OF THIS DEVICE SHOULD FOLLOW THE PRINT SUPPLIED WITH THE UNIT.

General Information

INTRODUCTION

Rotork Controls designs, manufactures, and tests its products to meet many national and international standards. For these products to operate within their normal specifications, they must be properly installed and maintained. The following instructions must be followed and integrated with your safety program when installing, using and maintaining Rotork Controls products:

- Read and save all instructions prior to installing, operating and servicing this product.
- If you do not understand any of the instructions, contact your Rotork Controls representative for clarification.
- Follow all warnings, cautions and instructions marked on, and supplied with, the product.
- Inform and educate personnel in the proper installation, operation and maintenance of the product.
- Install equipment as specified in Rotork Controls installation instructions and per applicable local and national codes. Connect all products to the proper electrical sources.
- To ensure proper performance, use qualified personnel to install, operate, update, tune and maintain the product.
- When replacement parts are required, ensure that the qualified service technician uses replacement parts specified by Rotork Controls. Substitutions may result in fire, electrical shock, other hazards, or improper equipment operation.
- Keep all product protective covers in place (except when installing, or when maintenance is being performed by qualified personnel), to prevent electrical shock, personal injury or damage to the actuator.

Before installing the actuator, make sure that it is suitable for the intended application. If you are unsure of the suitability of this equipment for your installation, consult Rotork Controls prior to proceeding.

WARNING - SHOCK HAZARD

Installation and servicing must be performed only by qualified personnel.

RECEIVING/INSPECTION

Carefully inspect for shipping damage. Damage to the shipping carton is usually a good indication that it has received rough handling. Report all damage immediately to the freight carrier and Rotork Controls, Inc.

Verify that the items on the packing list or bill of lading agree with your own.

STORAGE

If the product will not be installed immediately, it should be stored in a clean, dry area where the ambient temperature is not less than -20 °F. The actuator should be stored in a noncorrosive environment. The actuator is not sealed to NEMA 4 until the conduit entries are properly connected.

EQUIPMENT RETURN

A Returned Goods authorization (RG) number is required to return any equipment for repair. This must be obtained from Rotork Controls. (Telephone: 414/461-9200) The equipment must be shipped, freight prepaid, to the following address after the RG number is issued:

Rotork Controls 5607 West Douglas Avenue Milwaukee, Wisconsin 53218 Attn: Service Department

To facilitate quick return and handling of your equipment, include:

- RG Number on outside of box
- Company Name, Contact Person, Phone/Fax No.
- Address
- Repair Purchase Order Number
- Brief description of the problem

General Information

IDENTIFICATION LABEL

An identification label is attached to each actuator cover. The serial number is also stamped on the aluminum housing, directly above the conduit entry. When ordering parts, requesting information or service assistance, please provide all of the label information.

EXAMPLE:

MODEL:	WARNING:
	 MORE THAN ONE LIVE CIRCUIT.
SM-5120	 KEEP COVER TIGHT WHIL
SERIAL: 4585 C 01	CIRCUITS ARE ALIVE.
V/HZ/PH/A: 120 / 50-60 / 1 / .9	* A CONDUIT SEAL SHALL BE INSTALLED WITHIN
WIRING DIA: 95C 036051 - 1	450 MM OF THE
CUSTOMER P/N:	ENCLOSURE. * COVER JOINTS MUST BE
JORDAN P/N: SM-5130-0105	CUERNED BEFORE REPLACING COVER.
	P/N 638-031890-001

MODEL NUMBER: SM-5130 Series

SERIAL NUMBER: <u>4585</u> C <u>01</u> Sequential Number Year Built

GENERAL DESCRIPTION, ACTUATOR

The SM-5000 Series are quarter turn, rotary actuators that produce up to 12,500 ft. lbs. (16,947 Nm) of torque, and offer continuous modulating duty up to 4,000 starts per hour. They are designed for up to 90° rotation with bidirectional torque overload protection and have a manual override handcrank. This series of actuators uses a scotchyoke output gearing design that provides up to 66% more torque at the ends of travel (0° and 90° positions). The SM-5000 Series is ideally suited for dampers, vanes and valve control requiring high torque and exact position control.

All SM-5000 Series actuators are also available with an internal amplifier (excluding SM-5140). These amplifiers are all full-featured ac or dc switching devices designed to seamlessly work with the actuator for closed loop control.

The SM-5100 series includes 120/240 Vac single phase models, 208/240/380/480 Vac three phase models, and 24 and 90 Vdc models. Up to six independently adjustable position limit switches are available as options.

ABBREVIATIONS USED IN THIS MANUAL

A or Amps	Ampere
AC	Alternating Current
°C	Degrees Celsius
CW	Clockwise
CCW	Counterclockwise
DC	Direct Current
°F	Degrees Fahrenheit
G	Earth Ground
Hz	Hertz
in. Ibs	Inch Pounds
kg	Kilogram
L	Line (power supply)
lbs.	Pounds
lbf.	Lbs. Force
LVDT	Linear Variable Differential Transformer
mA	Milliamp
mfd	Microfarad
mm	Millimeters
Ν	Newton (force)
NEMA	National Electrical Manufacturing Association
Nm	Newton Meter
NPT	National Pipe Thread
Ph	Phase
PL	Position Limit Switch
RPM	Revolutions per Minute
sec.	Second
TL	Torque Limit Switch
V	Volts
VA	Volts Amps
VAC	Volts AC
VDC	Volts DC
VR	Variable Resistance
W	Watt

BASIC MODELS

The **SM-5120** and **SM-5190** are single phase ac, three wire, plug reversible models.

These models may also be equipped with an internal AD-8140 servo amplifier that features loss of signal detection for current command signal inputs and can be calibrated to allow the actuator to lock-in-place or drive to a preset position should the command signal drop below 3.8mA. Also included is a dynamic brake circuit to increase positioning accuracy and a looppowered, 4 to 20mA position transmitter.

The **SM-5115** is a three phase ac, reversible model, and can be equipped with an internal AD-8900 series servo amplifier.

The **SM-5140** and **SM-5160** are dc proportional control models. These actuators may be equipped with an internal AD-7830 or AD-9120 servo amplifier, or external AD-7830, AD-9120 or AD-7540 servo amplifier.

SM-5100 Series Specifications

Rotation

Up to 90°

Duty Cycle

AC: 2,000 1% position changes/hour. DC: 4,000 1% position changes/hour.

Temperature -40 °F to 150 °F (-40 °C to 65 °C).

Environment Ratings NEMA Type 4 (IP65)

Weight Approximately 80 lbs. (36 kg).

Enclosure Materials Cast aluminum alloy.

Lubrication Type Grease, permanently lubricated.

Gearing Spur type.

Hold on Loss of Power

Self-locking. Optional brake allows improved positioning response.

Mounting

Any position.

Torque Limiting

Bi-Directional, disables motor in one direction when torque rating is exceeded.

Output Shaft

One inch (25.4 mm) diameter with 20 tooth spline, or one inch (25.4 mm) diameter with 0.25 inch square (6.35 mm) keyway.

Anti-Condensation Heater

120 or 240 VAC, 30 Watt with thermostat set for 110 °F (43.3 °C).

Position Feedback

1000 ohm potentiometer.

Optional contactless feedback available.

Field Wiring To barrier type terminal blocks.

Integral Thermal Protection/Single Phase AC Motor Standard thermal overload protection at 130 °C, self resetting.

End-of-Travel Position Limit Switches 20 Amp, 250 VAC

	Input Power	Current	(Amps)	Amplifie	er Model	*Time/Torque	
Actuator Model	Volts/Phase/Hz	Run	Stall	Internal	Remote	sec./ft. lbs. (Nm)	
	240/3/50-60	0.4	1.3			16/150 (203)	
SM-5115	380/3/50	0.3	0.9	AD-8900	AD-8900	29/300 (407)	
	480/3/50-60	0.2	0.65			48/300 (407)	
						16/150 (203)	
SM-5120	120/1/50-60	2.5	2.9	AD-8140	AD-8240	29/300 (407)	
						48/300 (407)	
SM-5140	24 VDC	4.5	10	NA	10.75.40	20/150 (203)	
5101-5140	24 VDC	4.5	10	I NA	AD-7540	33/300 (407)	
	90 VDC			NA	AD-7830 or AD-9120	13/150 (203)	
SM-5160	120/1/50-60	2.5	6	AD-7830		24/300 (407)	
	208/1/50-60			or	NA	39/300 (407)	
	240/1/50-60			AD-9120		55/500 (1077	
						16/150 (203)	
SM-5190	240/1/50-60	1.2	1.5	AD-8140	AD-8240	29/300 (407)	
						48/300 (407)	

*Multiply these shift times by 1.2 for 50 Hz operation of AC models. All travel times are nominal for 90° of movement.

5

SM-5100 Series Specifications

OPTION SPECIFICATIONS

Servo Amplifiers

All servo amplifiers include a fieldadjustable command signal monitor that can be set for lock-in-place, or drive to a pre-set position if the current command signal is lost. They also have a dynamic brake circuit which helps increase positioning accuracy of the loop by minimizing motor coast. These amplifiers are also equipped with a 4-20mA isolated two wire, loop-powered transmitter.

Local Auto/Manual, INC/OFF/DEC Toggle Switches

Actuator-mounted switches for control of Auto/Manual and INCREASE/OFF/DECREASE. These are available as toggle switches or NEMA style rotary switches.

Output Shaft

One inch (25.4mm) diameter with 0.25 inch square (6.35 mm) keyway.

20 Tooth Splined Drive Arm

Reversible for 1/2 tooth positioning.

Linkage Kit

Includes two clevises, two adjustment rods with lock nuts, two pipe adapters, two pins for clevises.

Auxiliary Position Limit Switches: (two or four):

20 Amps, 250 VAC maximum, or 5 Amps at 28 VDC.

Transmitter Position Feedback

4 to 20mA, isolated two wire loop-powered type. Tracks actuator position. Requires separate power.

Local Position Indicator

Reversible indicator to show open or close in either direction.

Local Control

Actuator mounted NEMA 4 rated switches for control of AUTO/MANUAL and INCREASE/OFF/DECREASE. These are available as toggle switches or NEMA-style rotary switches.

LVDT Contactless Feedback

Characterized feedback assembly directly replaces the standard linear feedback potentiometer.

Installation

MOUNTING

The outline and mounting dimensions for a standard unit are shown on page 23 of this manual. The rear cover opposite output shaft must have clearance so that it may be removed for adjustments and interconnect wiring. When the actuator is directly coupled to a drive shaft, it is recommended that a flexible, no backlash type coupling be used. The output shaft is also available with a splined output for standard lever arms and linkage drive to the driven load. The unit may be mounted on the standard foot mount, or a flange mount. Mounting may be in any position convenient to the driven load.

When mounting the unit, be sure that no excessive axial or side loading is applied to the output shaft. The limit switches and position feedback are connected through gearing to the output shaft of the actuator which should be positively secured to the driven load shaft so that no slippage can occur which would cause misalignment or damage.

When manual override is required, as in the event of a power failure, turn the crank in the proper direction for the desired output shaft rotation. If during manual operation, electric power is applied to the actuator, the selector lever will return to the "auto" position and the actuator will respond to the power command, The shift from "manual" to "auto" disengages the manual crank, which cannot be power driven, thereby protecting the operator. Care, however, should be taken when driving a load to recognize that excessive output torque may be developed by forcing the handcrank. A mechanical telltail-indicator shaft adjacent to the crank indicates over-torquing. The telltailindicator shaft will either protrude or recede depending on the direction of over-torquing. Discontinue cranking on overtorque warning.

The motor, limit switch and feedback area of the actuator depends upon the cover to maintain the NEMA 4 rating. This cover should be removed only when actual work is being done in that area and reinstalled immediately thereafter.

This actuator contains internal mechanical stops. If it is allowed to run outside of the initial factory alignment of the limit switches, a realignment of switches and feedback might be required.

Installation

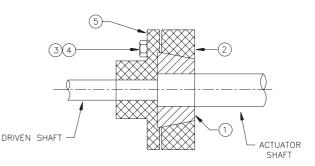
INSTALLATION WIRING

Typical wiring diagrams are shown on pages 7-8. Actual wiring should follow the print supplied with the actuator.

The wiring diagram shows the fundamental connections for the standard three-wire reversible singlephase motor, and the standard permanent magnet dc motor. These units show an arrangement with torque switches, four limit switches, two feedback potentiometers, and a heater. To meet special requirements, certain items shown may not be supplied. In all instances the wiring diagram appropriate to the equipment will be supplied with each unit.

A barrier type terminal strip is located under the rear cover opposite the output shaft. Two conduit entries are located in the side of the unit to accommodate standard 1 inch N.P.T. fittings.

CAUTION: On standard single-phase wiring, the position limit switches and the torque switches are wired directly in the motor circuit and protect it at the extremes of travel or at torque cutout. Three phase AC or DC units must have these torque and position limit switches wired into the controlling device to cause end of travel or torque shutdown. Care must be taken in wiring these to the controlling device so that the appropriate direction of control is turned off when that direction's limit switch is actuated. If care is not taken in phasing the equipment, damage may occur to the actuator or driven load. Also, inductive devices, such as lights and solenoids, must not be paralleled across motor terminals 1 and 2 or 1 and 3 as this will upset the motor capacitor phase shift and motor torque will be affected.

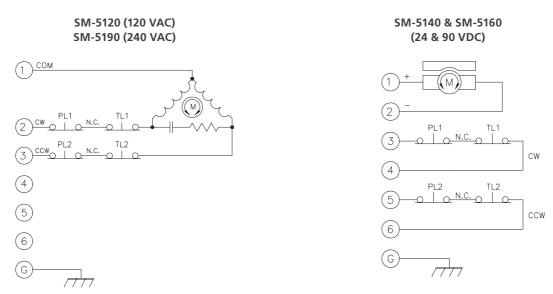

- All wiring must be done in accordance with prevailing codes by qualified personnel.
- Fusing must be installed in line power, and should be of the slow blow type.
- Wiring should be routed to the actuator through the two conduit openings. Generally, one conduit will contain input power and earth ground wires. The other conduit would then contain low level input and output signal wiring. It is required that all low level signal wiring be a shielded type with the shield grounded at source common.
- After installation, it is required that all conduits be sealed to prevent water damage and to maintain NEMA 4.

JORDAN CONTROLS SUPPLIED (OPTIONAL) COUPLING (Field Installed)

Jordan Controls has designed a three piece "wedgelock" coupling which can be adjusted to align the driven device to the actuator output shaft with no concern as to keyway alignment of the shaft on the drive device in relation to the spline on the actuator output shaft.

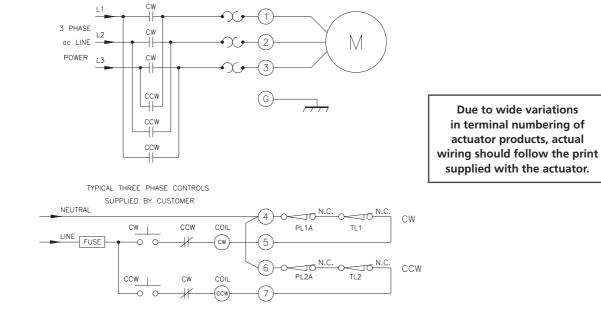
ADJUSTMENT

- 1. Slide coupling (5) onto driven shaft.
- 2. Slide coupling cone (1) and cup (2) onto actuator shaft.


- 3. Mount actuator with the two shafts in line and the shaft ends about inch (3 mm) apart.
- 4. Turn the shaft of the driven device to the close position.
- 5. Run the actuator to the close limit switch.
- 6. Lock coupling (5) to the driven shaft by pinning or other suitable method.
- 7. Slide cone (1) to fit flat in recess of coupling (5).
- Install three bolts and lockwasher (3) and (4) and tighten. (20-30 ft. lbs.)
- 9. Operate the actuator in the open direction and back to the closed direction until the close limit switch stops the actuator.
- 10. If the driven shaft does not move to the exact closed position you want, loosen the three bolts and turn the driven shaft. Tighten the bolts. (20-30 ft. lbs.)

NOTE: Keep the coupling parts clean while assembling.

See page 18 of this manual for Jordan supplied linkage components information.


Typical Wiring Diagram

ACTUATOR WITHOUT AN INTERNAL AMPLIFIER

Actuator Action	AC Power Applied to Terminals		DC Power Applied to Terminals		
	1 & 2	1 & 3	1(+) & 2(-)	1(-) & 2(+)	
Viewing Output Shaft	CCW	CW	CW	CCW	

Notes: 1. The torque limit switches are factory set to trip if the rating of the actuator is exceeded. 2. Shielded wire is required for position feedback signal wiring.

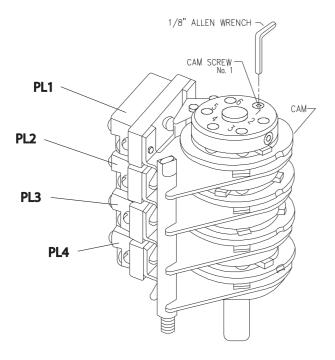
SM-5115 SERIES ACTUATOR

Notes: 1. Optional remote three phase reversing starter shown.

2. Caution: Care must be taken in properly phasing position and torque limit switches with respect to clockwise and counterclockwise positioning.

Start-up

ACTUATORS WITHOUT SERVO AMPLIFIERS


A. POSITION LIMIT SWITCH ADJUSTMENT (Ref. Fig. 1)

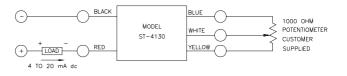
NOTE: The actuator is shipped in its mid-travel position.

- 1. Referring to your wiring diagram, apply motor power and drive the actuator in the CW output shaft direction (looking at the shaft), until PL1 trips and stops the actuator. This is the CW limit switch setting and starting point for final switch adjustment.
- 2. Move the controlled equipment to the same starting point and couple the actuator output shaft to the driven shaft.
- 3. Apply motor power to rotate the output shaft CCW about 5 degrees, allowing PL1 switch to reset.
- Apply motor power to rotate the output shaft CW until PL1 trips, turning off the motor. If the driven device is not at the desired position:
 - a. Remove motor power.
 - b. Using an 1/8 inch, long shaft allen wrench, loosen Cam Screw #1 about 1/4 turn.
 - c. Rotate Cam #1 CCW to allow the actuator to run further in the CW direction or rotate the cam CW to turn the actuator off sooner. (Cam #1 will turn off the motor for CW output shaft rotation, when the switch roller lever moves to the high side of the cam with the cam rotating CW.)
 - d. Position the Cam as desired and while holding in place, tighten screw #1 with moderate force to adequately clamp the cam in place.

DO NOT OVER TIGHTEN.

10

- 5. Apply motor power to drive the actuator to the desired CCW position or until PL2 trips and stops the motor. If the driven device is not at the desired position:
 - a. Remove motor power.
 - b. Loosen Cam Screw #2 about a turn.
 - c. Rotate Cam #2 CW to increase the actuator's total travel range or CCW to decrease the travel range.
 - d. Hold the cam in place and tighten screw #2.
- Electrically operate the actuator to its CW limit and back to the CCW limit to check switch settings. Readjust Cam #1 or #2 as needed.
- 7. Switches 3 through 6 (optional) are adjusted by loosening their respective cam screws and rotating the cam. They may be set anywhere within the range of PL1 or PL2.
- 8. If the unit is equipped with a feedback device and switches PL1 or PL2 were readjusted, proceed with the proper feedback alignment prior to any further adjustments or operation of the actuator.


B. 1000 OHM POTENTIOMETER ADJUSTMENT

- 1. Run the actuator to the center of travel. Loosen the three panhead screws, securing the potentiometer body, and rotate it to its center of travel (500 ohm) position. An ohmmeter will be required for this adjustment. Tighten the three screws.
- 2. Run the actuator to the zero or minimum travel limit. With the actuator running, monitor the potentiometer with an ohmmeter to ensure the potentiometer deadband is not crossed.
- 3. If your system requires a low resistance starting point, loosen the three screws and rotate the potentiometer body for the required starting resistance. This is usually 20 to 50 ohms (measured from the potentiometer wiper arm to the zero end of the potentiometer).

C. 4 to 20mA TRANSMITTER OPTION ADJUSTMENT

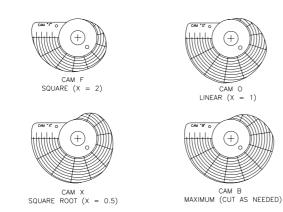
The ST-4130 (1000 ohm-input, 4 to 20 mA output) two wire transmitter modulates the current on a direct current supply proportional to the input resistance. It is powered by a separate 12.0 to 36.0 Vdc regulated power supply line which is modulated from 4 to 20 mA proportional to the resistance of the input.

For the unit to function optimally, the 4mA end of the feedback potentiometer must be preset to 50 ohms.

Start-up

- 1. Position the actuator to the desired 4mA setting.
- 2. With potentiometer resistance at 50 ohms, adjust ELEVATION for 4.0mA output.
- 3. Position the actuator to the desired 20mA setting.
- 4. Adjust RANGE for 20mA output.
- 5. Repeat steps 1 through 4 until desired accuracy is achieved.
- 6. To reverse the 4 and 20mA output, interchange the BLUE and YELLOW wires and return to step 1.

D. ACTUATOR WITH INTEGRAL AD-8140 SERVO AMPLIFIERS


Switch and feedback potentiometer alignment is accomplished in the same manner as actuator without amplifiers, except motor power is supplied from the amplifier. Varying the command signal input to the amplifier will allow reversal of the rotation of the actuator output shaft to run to the minimum/maximum switch settings. If the actuator does not run to the limit switch, but stops short, the amplifier has nulled and adjustments of span, elevation, loss of signal, or feedback potentiometer may be required. Refer to IM-0665 for information on the AD-8140 amplifier.

E. CHARACTERIZED CAM ADJUSTMENT (OPTION)

The characterized feedback assembly is an option which directly replaces the standard linear feedback potentiometer. Prior to adjusting the cam, the end of travel limit switches must be set and the proper cam installed for your particular system requirements on the characterized cam shaft. Four different cams are supplied with each characterized assembly. The cams are printed on both sides and may be flipped over to reverse the characterization action in relation to the output shaft rotation.

The cams are each printed with a letter "O", "F", or "B" which indicate the cam type. Three of the cams are shaped to correspond to X=2, 1, and 0.5 respectively in the equation:

% amplifier input = (% shaft rotation)x

The fourth cam is used for any value of x between 0.5 and 2 and must be cut by the user. For details on cutting this cam, see "To Shape Feedback Cam".

- a. Run the actuator to the zero or minimum position limit. While running, observe the direction of character cam rotation.
- b. Is the cam rotating in the direction of 100-0 for your system requirement? If not, remove the thumb screw and flip the cam over. Tighten the screw.
- c. Have you selected the proper cam for the system requirement? If not, remove the thumb screw and change the cam, installing the cam the same as in (b) above. (Green or Black side up.)
- d. Loosen three screws and remove the cam assembly.
- e. Rotate the cam until the zero on the cam is in line with the center line of the potentiometer or LVDT shaft.
- f. Potentiometers need no further adjustment.
- g. LVDT contactless feedback may require fine zeroing.
 - i. Apply power to the LVDT and monitor the output with a volt meter.
 - ii. Loosen the two body clamp screws and slide the body of the LVDT to obtain zero output.
 - iii. Tighten the body clamp screws.
 - iv. If a finer adjustment is desired, loosen the nut on the LVDT shaft and turn the shaft slightly one way or the other and tighten the nut.

TO SHAPE FEEDBACK CAM

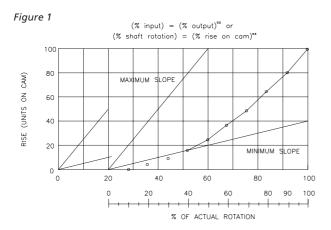
With characterized feedback, one of the four cams supplied (cam B), is partially shaped. For installation, it must be cut to its final shape by the user. This cam is used if none of the other three cams produces the desired input-output relationship where:

% amplifier input = (% shaft position)X

Two typical conditions where the user might want to use the fourth cam are:

- In equation above, if the value of X is not equal to 0.5 or 2.
- 2. In equation, if the value of X is equal to 0.5 or 2, and if upper shaft position is not equal to 100% (90°), and/or lower shaft position is not equal to 5% (0°).

To lay out the cam shape for the desired input-output relationship, it is necessary to determine outputs (rise in cam), for various inputs (amount of cam rotation). The rise in the cam corresponds to % of maximum output range and the amount of cam rotation corresponds to % input signal to amplifier.

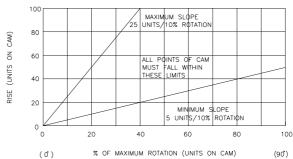

Start-up

- Lay out on graph paper, axes and maximum and minimum slopes as shown in figure 2. (Maximum slope is 25 units rise per 10% shaft rotation; minimum slope is 5 units per 10% rotation.)
- If either upper or lower shaft position is not at 0 or 100% (0° or 90°) respectively, lay out additional x-axis scale as shown in figure 3 on page 13. Use both sets of values when plotting cam shape in step 3.
- Calculate outputs (rise in cam) for 5% or 10% increments in input for entire input scan (actual cam rotation). NOTE: only output values that fall within maximum and minimum slope lines can be used.
- 4. Plot these values on cam. Scribe smooth line between points and grind cam to this shape.

Refer to example for typical cam calculations and layout.

TYPICAL FEEDBACK CAM CALCULATIONS

EXAMPLE: Assume X in (input/output equation) = 0.5, and that upper and lower shaft positions are at 100% and 20% (90° and 18°), same as center illustration of Figure 3.



Input	Output				
% of actual rotation	location on cam	% rise on cam			
0	20%	0			
10	28	1*			
20	36	4*			
30	44	9*			
40	52	16			
50	60	25			
60	68	36			
70	76	49			
80	84	64			
90	92	81			
100	100	100			

Note: These values fall outside of minimum slope on graph.

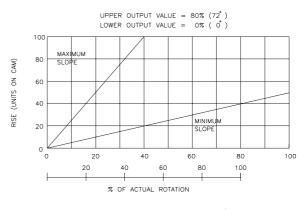

12

Figure 2

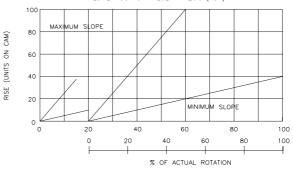
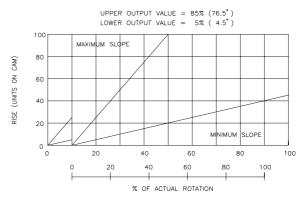
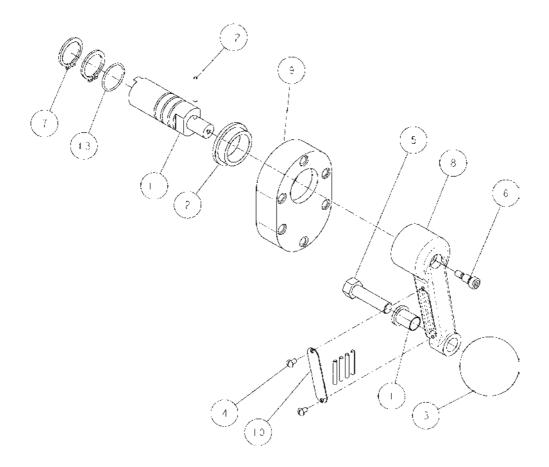


Figure 3


Illustrations below show an 80% (72") shaft rotation span.

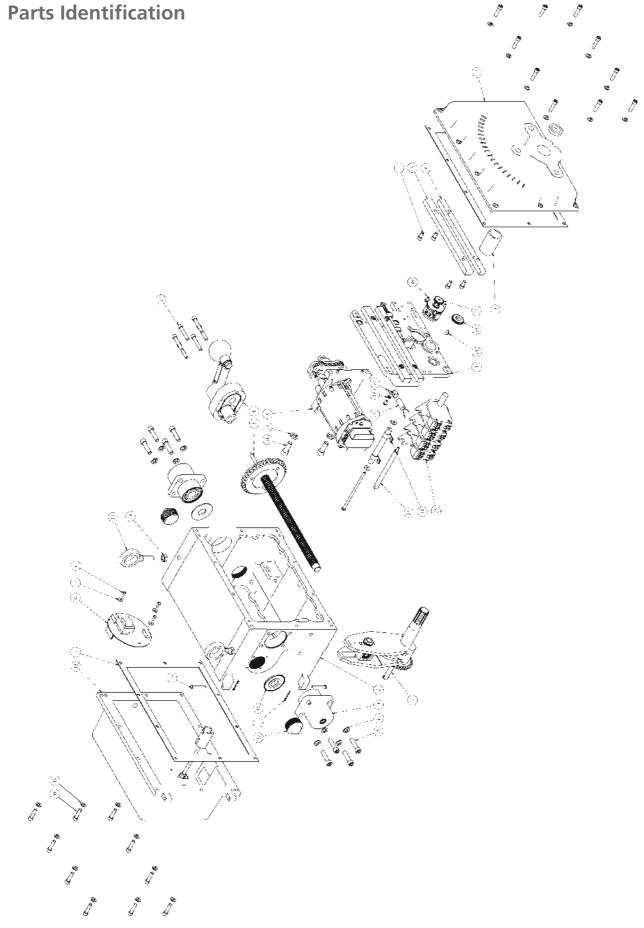
If lower shaft position is NOT equal to 0% (0°) redraw slope limits to go through actual starting rotation point, as show above.

If lower shaft position is NOT equal to 0% (0°) redraw slope limits to go through actual starting rotation point, as show above.


Troubleshooting Guide

TROUBLE	POSSIBLE CAUSE	REMEDY	
	a. No power to actuator	a. Check source, fuses, wiring	
	b. Motor overheated and internal thermal switch tripped (single phase AC motors only)	 b. Let motor cool and determine why overheating occurred (such as, excessive duty cycle or ambient temperature) 	
	c. Motor burned out	c. Replace motor and determine cause of failure	
	d. Motor drag brake improperly adjusted	d. Adjust as detailed on page 20	
	e. Motor drag brake defective	e. Replace drag brake	
	f. Both end of travel switches open or one open and one defective	f. Adjust switch settings or replace defective switch	
Motor does not operate	g. Actuator output shaft stalled	g. Check drive load for mechanical jam and correct cause	
	h. Defective motor run capacitor	h. Replace capacitor (AC models)	
	i. Load exceeds actuator torque rating	i. Reduce load or replace actuator with one with appropriate torque rating	
	j. Power applied to CW & CCW rotation at same time	j. Correct power input problem	
	k. Amplifier defective	k. Replace amplifier	
	i. Amplifier is in Loss of Signal	i. Check command signal to verify signal greater than 3.8 mA is present	
	m. Amplifier deadband is too wide	m. Reduce deadband setting	
	a. Power applied to CW & CCW rotation at the same time	a. Correct power input problem	
Motor hums, but does	b. Damaged power gearing	b. Repair gearing	
not run	c. Defective motor run capacitor	c. Replace capacitor	
	d. Motor drag brake	d. Adjust or replace as required	
Motor runs, output shaft does not rotate	a. Defective power gearing	a. Repair gearing	
Motor does not shut	a. Switch wired wrong or is defective	a. Correct wiring or replace switch	
off at limit switch	b. Motor phased incorrectly	b. Correct wiring	
Actuator backdrives	a. Motor drag brake improperly adjusted	a. Adjust as detailed on page 20	
when power is removed	b. Motor drag brake defective	b. Replace drag brake	
	a. Power still on	a. Remove power	
Handcrank does not move output shaft	b. Load is jammed and motor drag brake slips	b. Remove jammed load	
·	c. Drag brake missing or improperly adjusted.	c. Replace drag brake	

Troubleshooting Guide


TROUBLE	POSSIBLE CAUSE	REMEDY
	a. Power not applied for other direction	a. Correct power problem
	 Power always applied to one direction and electrically stalls when applied for opposite direction 	b. Correct power problem
	c. Open limit switch for other direction	c. Adjust or replace limit switch as required
Motor runs, but only one way	d. Actuator is torqued out	d. Determine obstruction and correct
	e. Motor has an open winding	e. Replace motor
	f. Motor and feedback potentiometer are out of phase	f. Reverse potentiometer end leads
	g. Amplifier is defective	g. Replace amplifier
	a. Amplifier deadband is too wide	a. Reduce deadband setting
Poor response to	b. Amplifier is defective	b. Replace amplifier
command signal changes	c. Excessive noise on command signal	c. Reduce noise. Also ensure that command signal wiring is shielded with shield grounded at source common only.
	d. Defective feedback potentiometer	d. Replace potentiometer
	a. Amplifier deadband is too narrow	a. Increase deadband setting
Actuator oscillates at	b. Amplifier is defective	b. Replace amplifier
setpoint	c. Excessive noise on command signal	c. Reduce noise. Also ensure that command signal wiring is shielded with shield grounded at source common only.
Pot feedback signal not	a. Pot not aligned with end of travel extremes and is being driven through dead region	a. Align pot to range of actuator
always present during actuator rotation	b. Pot signal is erratic or nonexistent	b. Replace pot
Pot signal does not	a. Defective pot	a. Replace pot
change as actuator operates	b. Feedback gear not turning pot shaft	b. Check gearing engagement and set screw in gear hub
Pot signal is reversed for output shaft rotation	a. Pot is wired wrong	a. Reverse wiring from ends of pot at actuator terminal block
Output shaft rotates wrong direction for	a. Wiring to actuator incorrect	a. Correct field wiring
CW and CCW input power	b. Wiring from motor to terminals or switches is reversed	b. Correct internal actuator wiring
	a. External wiring error	a. Refer to amplifier instruction manual
4-20 mA customer feedback missing or	b. Power supply fault	b. Refer to amplifier instruction manual
non-linear	c. Shunt resistance too light	c. Refer to amplifier instruction manual

14

ITEM	QUANTITY	PART NUMBER	DESCRIPTION
1	1	18B-SP1988-065	BUSHING
2	1	18B-SP1988-075	BUSHING
3	1	47A-007639-001	КNОВ
4	2	54A-015023-025	SCREW RD HEAD #6-32 X .25 LG
5	1	54A-015081-150	CAP SCREW HEX HEAD .38-16 X 1.50 LG
6	1	54A-015204-038	SCREW SHOULDER SOC HD .25 X .38 LG
7	2	58B-014186-098	RET. RING TRUARC #5160-59
8	1	60B-018982-001	HANDLE CRANK
9	1	60B-038887-001	HADN CRANK HOUSING MACH NEMA 4
10	1	61A-017891-001	RETAINER PLATE SHEAR PINS
11	1	61A-038877-001	SHAFT
12	5	61A-038895-001	SHEAR PIN
13	1	74B-01957-020	O-RING .88 I.D. X 1.0 O.D.

Parts Identification

Parts Identification

ITEM	QUANTITY	PART NUMBER	DESCRIPTION	
1	4	54A-015060-050	CAPSCREW SOC HD .25-20 x .50 LG.	
2	1	60D-019010	CASTING CENTER	
3	1	61B-011412-001	SUPPORT RAIL	
4	1	61B-011882-001	SUPPORT RAIL	
5	1	68B-018992	DRIVE GEAR ASSEMBLY	
6	1	68B-038894-001	HANDLE ASSEMB;Y	
7	1	68C-036204	OUTPUT SHAFT ASSEMBLY	
8	1	68C-038912	AC MOTOR ASSEMBLY WITH DRAG	
9	1	68D-036211	CENTER SUPPORT ASSEMBLY	
10	1	68C-035819-001	AMPLIFIER PCB ASSEMBLY	
11	2	57A-033270-019	COTTER PIN	
12	2	13C-017985-002	DOOR GASKET	
13	2	74A-017486-001	COVER HINGE PIN	
14	2	68A-017205	END CAP HOUSING	
15	2	74B-010957-033	END CAP SEAL	
16	1	18B-003814-035	FRONT BUSHING	
17	1	60D-017257-001	FRONT COVER	
18	1	19B-003815-002	FRONT SEAL	
19	3	58B-024244-095	GENERIC TYPE B FLAT WASHER	
20	1	74A-016946	HEATER	
21	1	74A-016947-001	HEATER CLIP	
22	1	54A-015033-038	HEATER SCREW	
23	2	58B-024244-002	EYE BOLT	
24	2	55A-015089-001	GENERIC REGULAR HEX NUT	
25	1	68D-021669	LIMIT SWITCH ASSEBLY	
26	1	61A-025809-001	LIMIT SWITCH GEAR	
27	1	62A-021667-002	ANCHOR SHAFT	
28	1	58B-016181-006	LIMIT SWITCH KEY	
29	2	56A-015231-001	WASHER .38	
30	20	56A-015211-001	SPLIT RING	
31	3	54A-015023-063	GENERIC PAN HEAD SCREW	
32	2	52A-024353-001	PIPE PLUG	
33	1	60D-017481	REAR COVER ASSEMBLY	
34	2	33B-003852	RESISTOR CLIP	
35	8	54A-015070-100	SKT HD SCR .31 X 1.25	
36	20	54A-015060-100	SKT HD SCR .25 X 1.5	
37	6	54A-015060-075	SKT HD SCR .25 X 1.5	
38	2	54A-015080-150	SKT HD SCR .38 X 1	
39	1	68A-007162	SWITCH ASSEMBLY	
40	4	54A-015032-025	SWITCH ASSEMBLY SCREW	
41	8	56A-015221-001	WASHER .31	

Maintenance

LUBRICATION

Under normal service conditions the motor, gearing, bearings, and parts are all pre-lubricated and should not require periodic maintenance. If for any reason the unit is disassembled in the field, all oilite bushings should be resaturated with an SAE-10, non-detergent oil and all gearing heavily coated with Amoco Rykon Premium Grease #2 or equivalent grease. Care should be taken to ensure that no foreign material is allowed to become combined with the grease in the gear train, which will cause premature failure. Keep gearbox clean and dry.

DRAG BRAKE ADJUSTMENT

The drag brake serves two functions: a) to prevent actuator from backdriving at maximum rated torque; and b) to allow the motor shaft to slip when handcranking and the output shaft load is in excess of rated torque.

The drag brake was factory set and should not need readjustment. If it does need adjustment:

- 1. Apply an overhung load, equal to the maximum torque rating to the output shaft.
- 2. Loosen drag brake jam nut until the motor shaft starts to backdrive.
- 3. Tighten the drag brake jam nut just enough to prevent backdriving.
- 4. While handcranking against the load, increase the load until motor backdriving occurs.

TORQUE LIMIT SWITCH ALIGNMENT

The torque limit switches are factory set and field adjustment is not advised unless proper test equipment is available. If adjustment must be done, use the following procedure:

- 1. Load the output shaft with a known load which matches the torque rating of the actuator in an opposing direction for the switch being adjusted.
- 2. Apply power to the motor and run the actuator to drive the opposing load.
- 3. Increase the load by 5% to 10% and adjust the set screw (140C) to trip the torque switch.
- 4. Remove the 5% to 10% increase of load and the switch should reset.
- 5. Load the actuator in the opposite direction and set the other switch in the same manner.

NOTE: When looking at the torque limit switch assembly as it is mounted in the actuator, the switch on the top of the assembly controls the CW torque and the switch on the bottom controls the CCW torque. The torque should be set near equal for both directions.

When the actuator is driven into a torque condition in the CW direction (looking at the output shaft), the handcrank handle will move slightly outward. For CCW direction the handle will pull slightly inward.

Maintenance

MOTOR REPLACEMENT

- 1. Disconnect all power to the actuator.
- 2. Remove screws, washers and rear cover.
- 3. Disconnect actuator output shaft from driven device and remove actuator from mount.
- 4. Remove bolts, washers, and front gear case cover. Note location of all gearing.
- 5. Remove motor pinion.
- 6. Remove brake assembly from top of motor.
- 7. Disconnect motor wires note colors.
- 8. Remove motor.
- Reverse the procedure to install new motor. (Clean and regrease all gearing, check bushings and bearings, lubricate bushings with SAE-10, nondetergent oil.)
- 10. Reinstall the actuator.

POWER GEARING REPLACEMENT

- 1. Perform steps 1,3 & 4 of Motor Replacement.
- 2. Remove defective gear(s) and replace with new.
- 3. Ensure all gearing and oilite bushings are properly lubricated as detailed above.
- 4. Install front cover and Reinstall actuator.

POSITION LIMIT SWITCH REPLACEMENT

- 1. Disconnect all power to the actuator.
- 2. Remove rear cover.
- 3. Remove two screws and washers from appropriate switch on assembly.
- 4. Install new switch and transfer wires from old switch one at a time.
- 5. No realignment should be necessary.

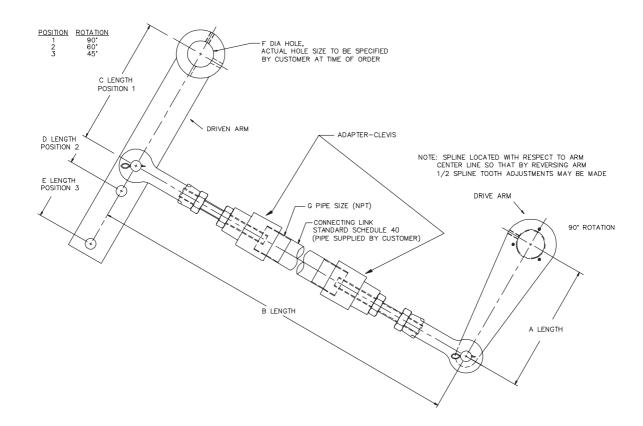
FEEDBACK POTENTIOMETER REPLACEMENT

A. One Turn Linear Potentiometer

- 1. Disconnect all power to the actuator.
- 2. Remove screws, washers, and rear cover.
- 3. Remove three screws holding potentiometer and disc to housing.
- 4. ull potentiometer and disc out of housing.
- 5. Measure location of gear from mounting disc to farthest face of gear and note measurement.
- 6. Loosen set screws and remove gear.
- 7. Remove nut and washer holding potentiometer to disc.
- 8. Cut shaft of new potentiometer to same length as old.
- 9. Mount new potentiometer on disc, tighten potentiometer nut, install gear to measured dimension from step 5.
- 10. Install assembly in housing and tighten screws.
- 11. Using a 25 watt solder iron, remove wires from old potentiometer one at a time and solder to corresponding terminals on new potentiometer.
- 12. Align potentiometer and install cover.

B. Characterized Potentiometer

- 1. Disconnect power and remove rear cover.
- 2. Remove three screws and pull potentiometer off of pins.
- 3. Install new potentiometer and tighten screws.
- 4. Using a 25 watt solder iron, remove wires from old potentiometer one at a time and solder to corresponding terminals on new potentiometer.

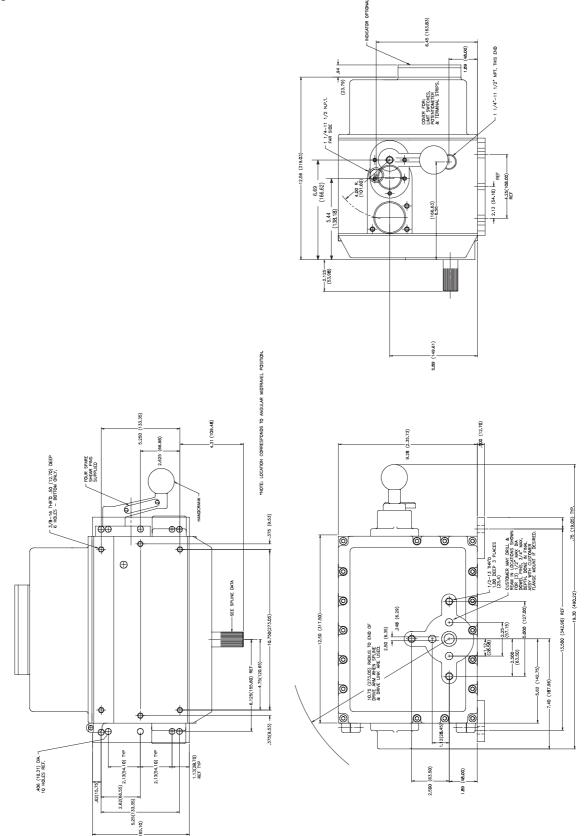

CAUTION - DO NOT USE EXCESSIVE HEAT WHEN SOLDERING.

5. Align potentiometer and install cover.

C. LVDT Assembly Replacement

- 1. Same as Characterized Potentiometer replacement above.
- 2. Align LVDT body for zero output (see alignment procedure, characterized cam adjustment on page 12, step G).

SM-5000 Series Drive Arm and Linkage Options


Notes:

- 1. Maximum total linkage length is specified to prevent buckling under compressive load.
- 2. Adjustable drive arms are also available to allow "A" length to vary from 6 to 10 inches (152 to 254 mm). In this case, the adapter-clevis has rod ball ends with lubricating fittings.
- 3. Special drive arm lengths are available to meet application requirements.

"A" LENGTH in. (mm) (See Note 3)	"B" LENGTH ft. (m)	"C" LENGTH in. (mm)	"D" LENGTH in. (mm)	"E" LENGTH in. (mm)	"F" DIA. HOLE minmax. in. (mm)	"G" PIPE SIZE
10 (254)	18 (5.5)	10 (254)	12.25 (311)	17 (432)	0.75 - 1.5 (19 - 38.1)	1 - ¼ (NPT)

Major Dimensions

These dimensions are subject to change without notice and should not be used for preparation of drawings or fabrication of installation mounting. Current installation dimension drawings are available on request.

Notes

Notes

Keeping the World Flowing

www.rotork.com

A full listing of our worldwide sales and service network is available on our website.

 Rotork plc

 Brassmill Lane, Bath, UK

 tel
 +44 (0)1225 733200

 fax
 +44 (0)1225 333467

 email
 mail@rotork.com

USA Rotork Controls

tel +1 (585) 247 2304 fax +1 (585) 247 2308 email info@rotork.com Rotork are corporate members of the Institute of Asset Management

As part of a process of on-going product development, Rotork reserves the right to amend and change specifications without prior notice. Published data may be subject to change. For the very latest version release, visit our website at www.rotork.com

The name Rotork is a registered trademark. Rotork recognises all registered trademarks. Published and produced in the UK by Rotork Controls Limited. POWJB1115

PUB051-002-00 Issue 01/16